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The Analysis  of the Anisotropic Thermal  Motion of Molecules in Crystals 

BY D. W. J. CRUI(3KSHANK 

School of  Chemistry, The University,  Leeds 2, England 

(Received 24 February 1956) 

A method is given for determining the anisotropic rigid-body translational and rotational vibration 
tensors of molecules in crystals from the vibration tensors of individual atoms. 

1. In troduc t ion  

The preceding paper (Cruickshank, 1956a) has de- 
scribed how the magnitudes of the harmonic aniso- 
tropic thermal motion of atoms in crystals may be 
determined. The present paper is chiefly concerned 
with crystals containing molecules, and its chief object 
is to show how the magnitudes of the atomic motions 
can be used to determine the rigid-body vibrations of 
the molecules. 

We assume that  symmetric tensors U ~ have been 
found for each atom r such that  

3 3 

u ~ = 2" .~, U~ilil j (1.1) 
i=I i=i 

is the mean square amplitude of vibration of atom r 
in the direction specified by the unit vector 1 = 
(l 1, l~, la). We also assume that  the axes are orthogonal, 
and possibly defined by the molecule rather than by 
the crystal. This may necessitate transformations of 
the Ui~ as obtained by the methods of the previous 
paper. Transformations from monoclinic crystal axes 
to orthogonal crystal axes have been given by Rollett 
& Davies (1955); any orthonormal transformations 
needed may be made by the ordinary rules for tensor 
transformations. 

If there are zY atoms in the asymmetric unit, our 
problem is to interpret the N sets of U~j in terms of the 
rigid-body and internal vibrations of the molecule. 
In general the contributions from the rigid-body 
vibrations will be much larger than the contributions 
from the internal vibrations, so that  it is natural first 
to attempt to interpret the Ui~ solely in terms of rigid- 
body vibrations. The simplest hypothesis we can make 
about anisotropic risid-body vibrations is to suppose 
that  the motion of a molecule can be expressed in 
terms of two symmetric tensors, each with six in- 
dependent components, one  giving the translational 
vibrations of the mass centre and the other the angular 
oscillations (or librations) about the centre. 

If T is the tensor giving the mean-square amplitude 
of the translational vibrations, the translational con- 
tribution to the motion of any atom will be simply 

3 3 

~y, ~y, Ti i l i l j .  (1-2) 
i=I ~=I 

For the librations we may assume that 

3 3 

~, .,~ oJijt~t j (1-3) 
i=i i=i 

is the mean-square amplitude of libration about an 
axis defined by a unit vector t through the centre. 
The movement of an atom at r = (x, y, z) in a direc- 
tion 1 due to a libration is possible only when the 
molecule turns about an axis parallel to 1A r. Further, 
if the molecule turns through a small angle e about 
this axis the component of the movement of the atom 
along 1 is [l A r[e. Accordingly, by (1.3) the mean-square 
amplitude of vibration of the atom in the direction 
l due to small librations is 

3 3 

~ w0(IAr)i(1Ar)j. (1"4) 
i=I i=1 

Thus for rigid-body vibrations we assume that  each 
of atomic Ui~ tensors can be expressed as 

3 3 3 3 

~ U~ilil j = .~  .~, (Tijlil~+oo~j(IAr)i(IAr)~). (1-5) 
i=1 ~=i i=I i=1 

The problem is now to find the T and o~ tensors, 
given N U ~ tensors. 

2. D e t e r m i n a t i o n  of T 0 and oJ 0 

If we expand the right-hand-side of (1-5), using 
T21--T12, etc., we obtain 

Tlll~ + 2T12111~ + . . .  
+ ~o11(12z-13y)2 + 2~12(12z-13y) (13x- l lz)  + . . . .  (2.1) 

If we group the coefficients of lil i, manipulation yields 

l~ (Tll + z2o)99. + Y~Waa- 2yz w~a) 
+ 2111~( T l ~ -  x y w s a -  Zg eOlg + xzw23 + yzohs) + . . . .  (2"2) 

Equating coefficients of lili with those on the left- 
hand side of (1-5), we obtain the typical results 

U 1 1  = T11+z2mg~+yeo~aa-2yzoJ~a, (2-3a) 
and 

U12 = T l ~ -  xyo~aa- z2ojl~ + xzeo~a + yzcola . (2-3b) 
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from (2.3). The typical terms are" 

.(i) ~Ui//~T~ = 1 if i = k and j = l ,  
= 0 otherwise. 

If the molecule is planar and the axes are chosen 
with the z axis parallel to the plane normal, we obtain 
the following relations: 

{ 
U~. = T ~ - x y w z a ,  | (2-4) 

U~. 3 = T~.a-x~wea+xym~a , I U~a -~ Tla-y~eo~a +xyogea. 

We may  notice tha t  the forms for Ull and Ue~., and 
Uez and Ula are similar. The libration (~oaa) about the 
z axis affects only the motions (Un, U~, U~.) of the 
atom in the plane of the molecule; while the motions 
perpendicular to the plane are caused by libration 
about any axis in the plane (o~,  eo~, ~o~.) and by Taa. 

Since in general the number of observed Ui~ will 
be greater than the number (12) of independent Ti/ 
and wi/, the direct inverses of (2.3) are not of much 
interest, and the Tii and w~/are best determined by 
least-squares. Assuming for simplicity tha t  the same 
weights are at tached to each Ui~., and denoting the 

r obs, r observed Ui /as  U~ , the U~: calculated in terms of 
Ti/ and ¢oi/ by (2-3) as U~ a~¢', and the unknowns T~j 
and wi/ as A~, the least-squares normal equations 
will be 

To evaluate these equations we need ease. ~U~ /~A~ 
tha t  is we must  evaluate ~U~//~Tk~ and ~ U ~ / / ~  

(ii) ~ U l l / ~ ( D l l  = 0 ;  ~ U 2 2 / ~ 0 9 1 1  = z 2 ;  

Uaa/~wn = ye ; 

~ U ~ / ~ w ~  =0;  ~U~.s/~w~ = - y z ;  

~ U 1 3 / ~ ( D l l  = 0 :  

~ U ~ / ~ w ~  = 0; ~U~/~O~l~ = 0; 
~ U ~ / ~ w ~  = - 2xy  ; 

~ U ~ / ~ o ~  = - : ;  ~U~z/~o~ = xz; 

~U~a/~o~ = yz: etc. 

and 

(2.6) 

I ( 2 . 7 )  

I 
(2-8) 

The twelfth-order normal equations are shown in 
Fig. 1. Each matr ix element on the left-hand side 
represents the contribution from the 6Uij for each 
atom; the elements have thus to be summed over all 
atoms. The matr ix is symmetric and the elements 
below the diagonal have been omitted for simplicity. 
Each element of the right-hand side vector must also 
be summed over all atoms. 

Some simplification of Fig. 1 occurs if the molecule 
has planes of symmetry,  and the axes are referred to 
these. In  particular, there is considerable reduction if 
the molecule is planar. If we choose the mole6ular 
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plane to be z = 0, the twelfth-order equation of Fig. 1 
reduces to the following three fou_rth-order equations: 

1 0 0 y~ \ / T n \  /Un \ 
1 0x2  2) /T22~ /U22 / 

1 lUll. / '  
9$4 -~ y4 -~- x2y \O)33 / \y2Ull~X2U22-zY~J12/ 

(2.9) 

( l Y  ~x~ -2xy \ fTaa  t /U33 \ 
y" x ~ f  • -2~y31  o~l l  = | y ~ U 3 3  ~ (2.10) 

4x2y ~ / \oh2/ \-2xyU3a/ 

1 0 --x 9 \ / T 2 3  \ [ U23 \ xy 

y4-~x2y2 / \O)13 / \xyU23-y2U13 / 

(2.11) 

where again the matrix and right-hand side vector 
elements have to be summed over all atoms. 

If further the molecule is symmetrical about the 
x and y axes (e.g. benzene or anthracene), these equa- 
tions reduce still further to two third-order equations 
for (T n, Tee, maa) and (T3a, wn, cope), two second- 
order equations for (Tea, o~a) and (T13, w13) and two 
first-ocder equations for T~2 and w~. 

The accuracy Of the determination of the Ti] and 
wij may be estimated using the standard least-squares 
formula, namely 

a2(Ar) = C~a2(U) , (2"12) 

where aP(Ap) is the variance of one of the T 0 or wi/, 
C~:~ is the appropriate diagonal element of the matrix 
inverse to that  on the left-hand side of the above 
equations, and a~(U) is estimated as 

~(u) = ~ ( u  o~ . -  u~o)~/t  , 
n 

where t is the difference between the total number of 
U~C~" and the number of parameters determined. 

3. D i s c u s s i o n  

Equations (2-9), (2-10) and (2-11) have been applied 
successfully in analyses of the molecular motions of 

benzene (Cox, Cruickshank & S m i t h ,  1956) and 
anthracene (Cruickshank, 1956b). Benzene, however, 
illustrates a possible difficulty. If there are only a few 
atoms in a molecule it may not be possible to determine 
all the Ti/ and o~i/ uniquely. For instance, (2-10) 
shows that for a planur molecule four parameters are 

determined from the observed set of U~3. Accordingly 
at least four atoms are needed to determine these 
parameters; further, the atoms must not be equi- 
distant from the centre. In general the minimum num- 
ber of atoms for a complete solution is three, the atoms 
not being equidistant from the centre and their com- 
mon plane not passing through it. 

If the motions of a molecule can be successfully 
interpreted in terms of the T and co tensors, it is often 
of great interest to find the magnitudes and directions 
of the principal axes of these tensors, as the molecular 
motions may then be interpreted in relation to the 
inertia tensor and to the intermolecular packing. Less 
interest then attaches to finding the principal axes of 
the vibrations of the individual atoms. 

I t  is not possible to extend this kind of analysis to 
determine the internal vibrations of non-rigid mole- 
cules as the effects of the internal and rigid-body 
vibrations cannot be separated. For example, with a 
diatomic molecule it is impossible to determine how 
much of the motion of an atom along the interatomic 
line is due to rigid-body vibration and how much to 
the internal vibration. However, in special cases it 
may be possible to derive rough estimates of the 
vibration amplitudes of a small number of internal 
coordinates, e.g. if part of the molecule can be assumed 
rigid. On the other hand, if the magnitudes of the 
internal vibrations are known theoretically (Higgs, 
1953), these may be subtracted from the total ob- 
served amplitudes to give the amplitudes of the rigid. 
body motions. 
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